The ERES Method for Computing the Approximate GCD
نویسندگان
چکیده
The computation of the greatest common divisor (GCD) of a set of polynomials has interested the mathematicians for a long time and has attracted a lot of attention in recent years. A challenging problem that arises from several applications, such as control or image and signal processing, is to develop a numerical GCD method that inherently has the potential to work efficiently with sets of several polynomials with inexactly known coefficients. The presented work focuses on : (i) the use of the basic principles of the ERES methodology for calculating the GCD of a set of several polynomials and defining approximate solutions by developing the hybrid implementation of this methodology. (ii) the use of the developed framework for defining the approximate notions for the GCD as a distance problem in a projective space to develop an optimization algorithm for evaluating the strength of different ad-hoc approximations derived from different algorithms. The presented new implementation of ERES is based on the effective combination of symbolic-numeric arithmetic (hybrid arithmetic) and shows interesting computational properties for the approximate GCD problem. Additionally, an efficient implementation of the strength of an approximate GCD is given by exploiting some of the special aspects of the respective distance problem. Finally, the overall performance of the ERES algorithm for computing approximate solutions is discussed.
منابع مشابه
Numerical and Symbolical Methods Computing the Greatest Common Divisor of Several Polynomials
The computation of the Greatest Common Divisor (GCD) of a set of polynomials is an important issue in computational mathematics and it is linked to Control Theory very strong. In this paper we present different matrix-based methods, which are developed for the efficient computation of the GCD of several polynomials. Some of these methods are naturally developed for dealing with numerical inaccu...
متن کاملMatrix representation of the shifting operation and numerical properties of the ERES method for computing the greatest common divisor of sets of many polynomials
The Extended-Row-Equivalence and Shifting (ERES) method is a matrixbased method developed for the computation of the greatest common divisor (GCD) of sets of many polynomials. In this paper we present the formulation of the shifting operation as a matrix product which allows us to study the fundamental theoretical and numerical properties of the ERES method by introducing its complete algebraic...
متن کاملStructured Low Rank Approximation of a Sylvester Matrix
The task of determining the approximate greatest common divisor (GCD) of univariate polynomials with inexact coefficients can be formulated as computing for a given Sylvester matrix a new Sylvester matrix of lower rank whose entries are near the corresponding entries of that input matrix. We solve the approximate GCD problem by a new method based on structured total least norm (STLN) algorithms...
متن کاملComputing Wiener and hyper–Wiener indices of unitary Cayley graphs
The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.
متن کاملImprecise Minority-Based Full Adder for Approximate Computing Using CNFETs
Nowadays, the portable multimedia electronic devices, which employ signal-processing modules, require power aware structures more than ever. For the applications associating with human senses, approximate arithmetic circuits can be considered to improve performance and power efficiency. On the other hand, scaling has led to some limitations in performance of nanoscale circuits. According...
متن کامل